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ABSTRACT: Artificial intelligence (AI) and machine learning (ML) have become important tools 
for environmental scientists and engineers, both in research and in applications. Although these 
methods have become quite popular in recent years, they are not new. The use of AI methods 
began in the 1950s and environmental scientists were adopting them by the 1980s. Although an 
“AI winter” temporarily slowed the growth, a more recent resurgence has brought it back with 
gusto. This paper tells the story of the evolution of AI in the field through the lens of the AMS 
Committee on Artificial Intelligence Applications to Environmental Science. The environmental sci-
ences possess a host of problems amenable to advancement by intelligent techniques. We review 
a few of the early applications along with the ML methods of the time and how their progression 
has impacted these sciences. While AI methods have changed from expert systems in the 1980s to 
neural networks and other data-driven methods, and more recently deep learning, the environmen-
tal problems tackled have remained similar. We discuss the types of applications that have shown 
some of the biggest advances due to AI usage and how they have evolved over the past decades, 
including topics in weather forecasting, probabilistic prediction, climate estimation, optimization 
problems, image processing, and improving forecasting models. We finish with a look at where AI 
as employed in environmental science appears to be headed and some thoughts on how it might 
be best blended with physical/dynamical modeling approaches to further advance our science.
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A rtificial intelligence (AI) and machine learning (ML) have become important tools for 
environmental scientists and engineers, both in research and in applications. Although 
these methods have become quite popular in recent years, they are not new; AI and ML 

have been used in the environmental sciences (ES) for decades. The American Meteorological 
Society (AMS) Committee on Artificial Intelligence Applications to Environmental Science  
(AI Committee) has been promoting, advancing, and educating about these techniques since 
the 1980s. The types of methods used have evolved over this time period and practitioners 
in the environmental sciences have helped lead the way. Here we tell that story through the 
lens of this AMS Committee.

Here we use the term AI to encompass any type of machine “intelligence,” including expert 
systems that are typically a set of algorithms that codifies how an expert would make deci-
sions. Machine learning as used here refers to a subset of AI in which an algorithm learns 
from data. Figure 1 illustrates the AI/ML landscape. Deep learning (DL) is a subset of ML that 
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Fig. 1. Venn diagram of the relationship between AI, ML, DL, expert systems, and statistics.
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has evolved more recently and typically involves neural networks (NN) with many specialized 
layers, which allows extracting deeper levels of information at each layer. Foundational to 
all of these is rigorous application as defined by statistics (see sidebar).

Learning from Statistics
What is the difference between AI/ML and “traditional statistics,” hereafter referred to as A and S, respec-
tively? The trouble with such questions is that A and S are assumed to have an essence. Although Aristotle 
and the Dialogues of Plato dedicate volumes to the definition of “essence,” Wikipedia’s summary will suffice: 
“abstract universals logically or ontologically separate from the objects of sense perception” (Wikipedia 2022). 
With that definition in mind, the question becomes nearly moot, because even the most ardent debaters of A 
versus S generally agree that A and S do not have a singular essence. And yet, the question arises repeatedly 
simply because it has practical consequences. For example, the authors of this article have been faced with 
that question in deciding whether a particular submission to the AMS AI conference is more suitable for the 
AMS probability and statistics conference.

The question is also important because awareness of the connections between A and S can mutually 
benefit both. For example, recognizing that feed-forward, multilayered perceptions (i.e., neural networks) 
are closely related to regression models in statistics behooves one to compare the two. However, at least in 
the early years of applying AI/ML in ES, it was rare to find such a comparison. Consequently, many A models 
were put forth for solving problems that could have been solved with much simpler S methods. Even worse, 
many A models were proposed that were in fact inferior to S models, simply because A models are generally 
more capable of overfitting data.

As in most debates that fall into this A versus S taxonomy, e.g., wave versus particle nature of light, or 
frequentist versus Bayesian perspectives in statistics, it often turns out that both are true. As such, it is rea-
sonable to do both. That conclusion may seem obvious, but the fact remains that the majority of A articles 
make no attempt to compare their results with something on the S side. It is important to point out that 
doing both A and S has the added benefit of allowing one to answer the A versus S question grounded in 
the specifics of the problem, rather than in the vacuum of philosophical discourse.

Another reason for clearly highlighting the specific details of A versus S discussions is that such questions 
require a taxonomy that often does not exist. For example, do NNs (the deep or the shallow variety) belong to 
the A or the S side? Who invented cross validation—A or S folk? What about general linear models, general 
additive models, K-nearest neighbor, bagging, boosting, K-means, and random forests? Again, these ques-
tions assume the existence of an essence, which simply does not exist, given the evolutionary nature of the 
scientific process itself. Ideas gradually evolve, and it is often impossible to draw a border that separates the 
descendant from an ancestor. For example, it is reasonable to argue that NNs evolved from regression; in 
fact, some would argue that the evolutionary path is not long enough to consider one to be the descendant 
of the other; they would argue that regression and neural nets are still the same “species.”

To illustrate the ambiguities, consider the following dialogue between an A and an S scientist:
S: Here is a model that we (statisticians) call simple regression, but you A folk call neural net: y = α + βx.
A: But that has only one input.
S: OK, here is a model we call multiple regression: y = α + β1x1 + β2x2.
A: Yes, but it assumes linear relationships.
S: OK, here is a model we call polynomial regression: 

α β β β β β β β= + + + + + + … + +y x x x x x x x xP P
1 1 2 2 3 1

2

4 2

2

5 1 2 1 2

A: But …
S: Which, by the way, is a special type of multiple regression, concisely written as: y = Xβ, where X is 

a matrix containing the data on x1 and x2 and powers thereof, and β is a vector of all of what you A types 
call synaptic weights.

A: But that has only one output, y.
S: OK, here is a model we call multivariate multiple regression: Y = Xβ, where Y is now also a matrix 

whose columns contain the data on each of the outputs.
A: Yes, but as the number of inputs increases, the number of parameters in your model grows much faster 

than that in my neural net, and therefore your model can lead to overfitting.
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The story of AI in ES over the last four decades has been driven by a rapid evolution 
of Earth observations, communications bandwidth, compute capabilities, and AI/ML 
methodologies. Applying AI to real-world problems has become more urgent as the nega-
tive impacts of weather events have grown worldwide with a changing climate, growing 
populations in vulnerable areas, and continuing unsustainable practices. AI has entered 
the cultural mainstream as the social media, entertainment, and retail industries have 
seen companies, such as Google, Amazon, and Facebook, built on innovative AI become 
the most valuable in the world. Those companies, as well as academic researchers, have 
developed improved ML methodologies and an increasingly mature set of software tools, 
workflows, and best practices. Faced with a volume and velocity of environmental infor-
mation far beyond the ability of humans alone to manage, ES practitioners have naturally 
turned to automation infused with AI and ML to derive new knowledge and provide real-
time actionable predictions, augmenting the capabilities of researchers and forecasters 
for the benefit of society. While early activities of the AMS AI Committee included many 
focused on building knowledge bases and expert systems to encode and automate the 
thought processes of human experts, the advent of increasingly robust, fast, and explain-
able ML methods—including DL—has caused an inevitable transition toward leveraging 
ML methods. While expert knowledge remains essential to appropriately formulating 
the learning problem, including the data and “features” (quantities derived from the raw 
data) provided as input and the learning objective, these methods are free to discover and 
exploit relationships not previously known or easily articulated. As a result, over time, the 
orientation of AMS AI Committee conferences has been increasingly data driven.

While interest and progress in AI applications to ES have been largely driven by enhanced 
performance, computational efficiency (Chevallier et al. 2000; Krasnopolsky et al. 2002), and 
modeling flexibility, these gains also reflect its primary strength—the ability of ML to model 
complex and nonlinear systems. The development of ML methods has been accompanied at 
times with the ability to bring new understanding to the underlying physics. The develop-
ment of ES expert systems was also seen as an occasion to codify the knowledge of the expert 
sources (Moninger et al. 1987). Neural networks were used as a nonlinear version of principal 
component analysis (NLPCA) as early as the late 1990s (Monahan 2000; Hsieh 2001), which 
are actually an ancestor to the present DL autoencoders. NLPCA brought new understanding 
to the dynamics of monthly tropical Pacific sea surface temperatures (Hsieh 2009). Random 
forests (RFs) (Breiman 2001) inherently allowed the estimation of the relative importance 
of each predictor to the performance of the model. The approach was generalized and other 
methods, either inherent to the ML technique or model agnostic, have been developed (such 
as permutation techniques; Mielke et al. 1981) to bring new insights into these nonlinear 

S: Yes, but my model does not suffer from local minima, or the opaqueness associated with your neural 
net. Additionally, every aspect of my model (e.g., its weights and predictions) can be accompanied by con-
fidence or prediction intervals.

Here, we gave the last word to the S fellow, but the dialogue is not likely to end on a productive point. 
Two, more constructive scenarios would be

A: You do S, and I’ll do A, and then let us compare. (scenario 1)
or
S: You do A, and I’ll do S, and then let us compare. (scenario 2)
Superficially, the two scenarios may appear identical. But the difference between the scenarios is in the 

“culture” and expectations underlying the respective proposals. In the first scenario, A is usually confident 
that their model will emerge as the winner. By contrast, in the second scenario, chances are that S suspects 
that by the time they do their comparisons correctly (see the verification section), they will not be able to 
say which model is better.
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systems, including drivers of the systems’ extreme events. Such methods are now part of 
the field of Explainable AI (XAI) further discussed below. While AI can help scientists bet-
ter understand a system, scientific knowledge of the physics of the problem is important to 
configuring the method to select predictive features (see feature identification below), inform 
model architecture, group physically correlated features, or enforce other constraints guiding 
the calibration of the models toward physically consistent solutions.

A brief history of AI in environmental science
Although the concept of codifying human intelligence in programmable machines goes back 
centuries, the term “artificial intelligence” was coined by John McCarthy as he convened a 
conference at Dartmouth in 1956 to advance the use of machines to emulate human thought 
(AAAI 2017). The discussions between these researchers led to Department of Defense fund-
ing in areas such as language translation using primarily empirical approaches (Poole and 
Mackworth 2017). The early hype did not yield the anticipated results, leading to an “AI 
winter” in the 1970s where the funding agencies were not receptive to AI projects (Drew 
1973). AI began to rebound in the 1980s with interest in applications, primarily using 
expert system approaches, where computers were supplied with rules to make decisions 
that mimic what an expert would choose. It was against this backdrop that atmospheric 
scientists began to make forays into applying AI to their problems as discussed below. But 
again, within the greater community, more was promised than could be delivered and a 
second AI winter ensued. Interest was rekindled when International Business Machines 
(IBM)’s Deep Blue beat Gary Kasparov at chess in 1997 (Smith et al. 2006). The most recent 
surge in AI was spurred by the success of DL methods (see below) to beat a world champion 
at the complex game of Go (Silver et al. 2016, 2017). Figure 2 illustrates these ebbs and 
flows in AI activity.

Fig. 2. Timeline of the progression of AI. The top portion indicates the timeline in the environmental science community, 
including popular methods employed in the colored arrows. The bottom portion traces the history of use within the 
greater AI community, including the progression of AI booms and winters along the arrow.
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In 1984, the Environmental Research Laboratories (ERL) of the National Oceanic and 
Atmospheric Administration (NOAA) established the position of Special Advisor in Artificial 
Intelligence (coauthor Bill Moninger) to look into the potential of AI to improve weather 
forecasting and other aspects of NOAA’s work. The primary and most well-understood 
implementations of AI in those days were expert systems, in which expert human intel-
ligence is encapsulated into if–then rules that can be executed automatically. Such expert 
systems had shown efficacy in medical and other fields, and seemed to offer potential 
benefits to meteorology. The year 1984 also marks the start of the Artificial Intelligence 
Research in the Environmental Sciences (AIRES) workshops. The first AIRES workshops 
were organized in 1986 and 1987 in Boulder, Colorado. The records of these first work-
shops (Moninger et al. 1987; Dyer and Moninger 1988) and the ensuing other workshops 
and AMS conferences track the progression of AI methods in ES.

The AIRES workshops morphed into the AMS AI conferences, which began in 1998, or-
ganized by the same group of pioneers. While AI methods have changed considerably over 
time, the fields of their applications have been relatively constant. During this first phase 
of the development of AI for ES, during the mid-1980s and into the 1990s, several expert 
systems for weather forecasting were devised and tested. Developing the systems required 
extensive “knowledge engineering”—eliciting knowledge from experts in a form that could 
be encoded as executable rules (Dyer and Moninger 1988). Unfortunately, the limitations of 
expert systems, at least as applied to meteorology, became increasingly evident by the early 
1990s. It is apparent that not all useful knowledge can be expressed in words, or can be de-
scribed in if–then statements; indeed, a number of forecaster tasks seem more akin to visual 
pattern recognition than to analytic processing. Also, running the AI systems—answering 
the large number of questions posed by the systems—often took as much time for reasonably 
skilled forecasters as generating forecasts in more traditional ways. In addition, there was no 
obvious way for traditional expert systems to take advantage of rapidly improving computer 
capabilities for storing and analyzing large amounts of data—this is in contrast to other AI 
approaches, such as neural networks, that can naturally take advantage of greater computer 
power. These limitations of expert systems impacted other fields similarly and the initial glow 
of AI to revolutionize decision-making dimmed in many fields in the early 1990s, which is 
what ushered in the second AI winter (Fig. 2), when many AI-based computer corporations 
and AI startups failed, such as Symbolics, LISP Machines Inc., and Lucid Inc. (all companies 
building special-purpose AI hardware; Wikipedia 2021; Newquist 1994).

One exception to this trend was in the area of “fuzzy logic” (FL). Rather than attempting 
to encode human expertise into decision trees populated by “yes–no” branches, FL attempts 
to more closely model human reasoning’s ability to draw on diverse, ambiguous sources of 
evidence to arrive at an informed assessment. FL extends classical dichotomous logic by 
allowing statements to have truth values along a continuum from 0 (false) to 1 (true). This 
continuum provides a powerful formalism for representing concepts and implications via 
“membership functions,” allowing ambiguity and uncertainty to be propagated through an 
inference process and only resolved to a discrete answer at the final stage. FL was widely 
used at MIT Lincoln Laboratory (e.g., Delanoy and Troxel 1993) and the National Center for 
Atmospheric Research beginning in the early 1990s for a wide range of applications involving 
image processing, data quality control, and consensus prediction. Early successes included 
a microburst detection system for airports that ended a spate of aircraft crashes due to the 
phenomenon (Albo 1994). FL continues to be used in a number of applications, including 
remote sensing and hazard forecasting (Williams et al. 2009).

Tracking the AIRES and AI workshops and conferences tells the story of the development 
of AI in ES. As part of the 1987 AIRES II summary, neural networks are mentioned only 
once. When the ongoing series of AMS AI conferences started in 1998, expert systems were 
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no longer mentioned and more than half of the talks were based on neural networks. The 
further evolution of AI techniques used in ES is illustrated in Fig. 3, which splits AI methods 
into seven categories: neural networks (shallow), DL, tree-based methods including random 
forests and boosted regression trees, genetic algorithms, FL, and support vector machines. 
When two AI methods are applied, half credit is tallied for each. The category “other AI meth-
ods” includes less frequently used techniques, comparison of more than two AI methods, or 
contributions discussing in more general terms the role and progression of AI in ES. The latter 
includes ethical discussion, risk communication, and other such topics. Figure 3 displays 
the percentage of presentations focused on each method as compared to the total number 
of AI presentations at each conference. From 1998 through 2005, neural networks are the 
focus of more than half of the presented works. Shallow neural networks are defined here as 
networks with three or fewer layers, (i.e., at most two hidden layers and an output layer). FL 
is the second-most-used method during the late 1990s through the mid-2000s followed by 
genetic algorithms. Work based on support vector machines is presented consistently start-
ing in 2000 until the late 2010s. The use of tree-based methods became significant in the 
mid-2000s and continues to this day. These methods are currently the second-most-prevalent 
ML methods behind neural networks when shallow and DL models are combined. While as 
a percentage of works presented at the conferences the use of tree-based methods has been 
relatively stable during the late 2010s, this is relative to the total number of AI-focused pre-
sentations, which has grown dramatically.

Figure 4 estimates the work on AI in the ES field by displaying the number of presentations 
at AMS AI conferences since 1998, excluding works presented as part of joint sessions not 
directly focused on AI. The number of presentations increased from about 24 between 2014 
and 2016 to 162 in 2020. For example, while on a percentage basis tree-based methods presen-
tations were relatively stable around 20%, the number of works increased substantially from 
between 4 and 9 presentations per year to 30 in 2020. Figure 4 also illustrates the dramatic 
increase in overall AI works focused on ES starting around 2017–18. Prior to 2018 the AMS AI 
conference hosted between 19 and 47 presentations per year with an average of 31. DL meth-
ods emerged in significant numbers during the 2018 conference and increased rapidly from 
5 presentations in 2018 to 50 in 2020. During the same time the total number of AI-focused 

Fig. 3. Evolution of the AI methods used for works presented at the AMS AI conferences through 
the years.
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presentations increased by a factor greater than 5, from 32 in 
2017 to 162 in 2020.1 This rapid increase in interest in AI was 
previously observed in computer science conferences with an 
inflection point about 4 years earlier around 2014 (Perrault et 
al. 2019). This dramatic rise in the use of AI clearly coincides 
with the DL revolution but is not strictly associated with DL. Shallow neural networks includ-
ing self-organizing maps and tree-based methods represented about 33% and 20% of the 
presentations, respectively, in 2020 as compared to 35% for the DL presentations. During the 
previous AI transition from expert systems to neural networks and other techniques, research 
in the use of expert systems in ES all but ceased. This time, while DL is adding significantly 
to the AI toolbox, the new methods have not replaced the prior techniques, but rather have 
increased overall interest and use of AI for ES problems.

This interest in DL for ES problems that skyrocketed in the mid-2010s led to the AI Confer-
ence hosting dedicated DL sessions that covered the wide variety of applications where it has 
been applied. One remarkable aspect of DL adoption is how quickly some highly complex 
methods were widely adopted across the research community after being introduced the 
previous year. One particularly notable example is the U-Net image segmentation method 
(Ronneberger et al. 2015). The U-Net is a neural network that encodes and then decodes im-
ages to other images at different spatial scales and can be applied across arbitrarily sized 
grids. Because of its strong fit with many geospatial problems, and the availability of U-Net 
implementations through open source DL libraries, the network was quickly adopted for a 
wide range of domain applications (e.g., Kumler-Bonfanti et al. 2020).

The role of short courses, contests, and books in advancing the use of AI in ES
The AMS AI Committee has been running short courses on how to use AI/ML for environ-
mental science (including in Long Beach in 2000, Orlando in 2001, Seattle in 2004, Atlanta 
in 2006, Corpus Christi in 2007, Seattle in 2011, Seattle in 2017, Austin in 2018, Phoenix 
in 2019, and virtually in 2020 and 2021). We have also collaborated on short courses with 
the NOAA Workshops on Leveraging AI for Environmental Sciences in 2019 and virtually 
in 2020. At the beginning, only a handful of scientists registered. As an indication of how 

Fig. 4. Number of AI presentations at the AMS AI conferences through time including a large in-
crease starting in 2018. Non-AI-focused presentations are not included. The 2021 conference was 
impacted by the COVID-19 pandemic.

1 While only 109 AI-focused works were presented 
in 2021, this conference was entirely virtual due 
to the COVID-19 pandemic.
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quickly excitement is building around AI/ML, the past few years of short courses have sold 
out within a few days of opening. Even with the shift to online in 2020 and 2021, the courses 
have filled to capacity quickly. NCAR’s AI for Earth System Science Summer School (AI4ESS) 
held in June 2020 was originally planned for about 50 students in Boulder, Colorado, but 
when it became a virtual conference, it saw more than 8,000 individual logins.

The AMS AI Committee used the lectures compiled for the 2007 short course as a spring-
board for compiling an edited book on Artificial Intelligence Methods in the Environmental 
Sciences (Haupt et al. 2009), which documented various successful applications. Books by 
several other AMS AI Committee members also helped expose the utility of these techniques 
(Hsieh 2009; Krasnopolsky 2013; Haupt and Haupt 2004).

Contests were another method used to help popularize applications of AI in ES. To en-
courage the development and evaluation of AI systems for weather forecasting, NOAA’s ERL 
sponsored two forecast contests, which became known as Shootout-89 (Moninger et al. 1991) 
and Shootout-91 (Walker et al. 1992). Both of these contests addressed the question of fore-
casting severe weather over the U.S. High Plains. Six systems participated in Shootout-89: 
three traditional expert systems, a hybrid system including a linear model augmented by a 
small expert system, an analog-based system, and a system developed using methods from 
the cognitive science/judgment analysis tradition. Forecast skill of the systems was generally 
low—not surprising given that the forecast task (forecasting afternoon convective storms at 
1030 local time) is known to be a very difficult one. And because of the low scores, skill dif-
ferences among the forecast models were difficult to determine.

Because of these limitations, Shootout-91 was designed and took place in Colorado and 
Oklahoma in the spring and summer of 1991. Unfortunately, the results were not more im-
pressive than those from 1989. Indeed, among the conclusions published is that “it is not 
likely, however, that the systems will be able to perform as more than second opinions in the 
foreseeable future” (Walker et al. 1992), suggesting that the limitations of expert systems in 
weather forecasting were becoming evident by 1992.

Later forecasting contests, such as those reported in Lakshmanan et al. (2010) and McGov-
ern et al. (2015), include a variety of AI methods beyond expert systems, such as neural net-
works, decision trees, random forests, and gradient boosted forests. Those contests addressed 
more restricted tasks. One tested the use of polarimetric radar data to develop a hydrometeor 
classification algorithm to distinguish between frozen and liquid hydrometeors, or none. Oth-
ers challenged the participants to provide solar energy forecasts, wind power forecasts, or en 
route aviation turbulence encounter predictions given a large number of features derived from 
an NWP model, satellite, and radar. However, even in this case, significant skill differences 
among the distinct ML methods (when well applied) were not found: “The lack of statistical 
significance is not so much due to shortcomings of particular methods as it is to natural vari-
ability in the dataset” (Lakshmanan et al. 2010). Here we can summarize the results of these 
several forecast contests, along with the experiences of many system developers:

• Forecast skill depends far more on the quality of the input data (training data, and in the 
case of real-time forecasts, data on current meteorological conditions) than on the qual-
ity of the particular forecast algorithms. This also means that much of the effort spent on 
“winning” the contests is spent on data engineering. In the DL era, hand-engineering of 
features has been substituted with hand-engineering and automated searches of neural 
network architectures, which is feature engineering under another guise.

• Determining significant differences in skill requires a great deal of data spread over many 
forecast situations.

• For a related lesson, if you make any unintended exploits in a scoring method for a contest, 
expect someone to find it and use it.
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These contests provided positive practical experience with AI and meteorological data but 
did not bring in additional existing AI practitioners. They did, however, help identify promising 
talented students and introduced them to a broader network of mentors and opportunities. To 
bring additional AI talent to our problems, the committee hosted the 2014 contest on Kaggle, a 
platform that invites AI practitioners to test their methods on archived data. That contest drew 
competitors external to the field. To our surprise, the top three performing algorithms were 
all from outside the ES community and based on gradient boosted regression trees (GBRT), a 
method that had not been widely used in ES applications previously. The community learned 
from this experience and GBRTs are now commonly used in modern applications.

AI usage in environmental science
AI/ML methods have been applied to a plethora of problems and for a variety of use cases 
in ES. The list below only scratches the surface, but demonstrates the wide applicability of 
these methods.

Postprocessing for improved forecasting. Using AI to postprocess NWP output is one of the 
most prevalent applications of AI in ES because it typically works well to improve forecasts 
of both basic and derived variables (Haupt et al. 2020a). This usage is particularly impor-
tant for forecasting events that are not resolved by the NWP model, such as clouds, hail, and  
tornadoes. Although NWP has advanced in speed and accuracy over the decades, particularly 
with the advance of computing technology, accuracy is still imperfect and decreases with lead 
time as memory is lost from the initial condition, which is based on assimilating observations. 
Additionally, models have biases, which when determined can be corrected. Although some 
errors can be corrected with multilinear regression [model output statistics (MOS); Glahn and 
Lowry 1972], AI/ML methods are now doing a better job of capturing the nonlinearities.

It has long been understood that expert consensus is almost always more skillful over 
time than any single forecaster, which is why stock market index funds are so difficult to beat  
(Timmermann 2006). AI approaches to both NWP ensemble postprocessing for forecasting and 
data fusion of NWP and observations for nowcasting have proven pragmatic and successful, 
penetrating deeply into the weather enterprise. For example, the Dynamical Integrated Fore-
cast (DICast) system developed at the National Center for Atmospheric Research (Gerding and 
Myers 2003; Myers and Linden 2011; Myers et al. 2011) dynamically optimizes bias corrections 
and weights for the correction and combination of a collection of input model forecasts, using 
stochastic gradient descent or ridge regression. This approach was adopted and extended by 
The Weather Company (TWC; Koval et al. 2015; Williams et al. 2016), where it is used to provide 
billions of individual forecasts daily around the globe. TWC also makes use of an “augmented 
intelligence” human-in-the-loop capability that allows forecasters to add filters to constrain or 
nudge the automatically updating AI predictions before they are delivered to users.

Statistical and AI methods have also advanced probabilistic forecasting. Such methods are 
used to derive calibrated probabilities and scenarios suitable for quantitative decision-making 
from multimodel NWP ensembles (e.g., Delle Monache et al. 2013; Williams et al. 2018). AI 
methods have also been applied to derive nonlinear averages of single-model and multimodel 
ensembles (Krasnopolsky and Lin 2012; Campos et al. 2020; Fan et al. 2022). Those works 
show that AI methods can improve upon standard conservative ensemble averaging and 
linear regression averaging techniques because the AI approach takes into account nonlinear 
correlations between ensemble members that standard statistical approaches miss.

Use in the private sector. The advent of increasingly user-friendly AI tools, cloud computing, 
and Internet bandwidth for moving large amounts of both open and proprietary environmental 
data have enabled a plethora of private sector applications. With low barriers to entry, startup 
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companies can quickly add value to public forecasts by tuning them to local conditions, client 
sensors, or for specific applications. Established corporations provide bespoke weather and 
climate solutions, self-service cloud/AI/data platforms and industry-specific alerting, moni-
toring and decision support tools for agriculture, ground transportation, aviation, energy and 
utilities, insurance, financial services, retail, supply chain optimization, media and entertain-
ment, tourism, and more. Many of these solutions are never published in academic journals, 
but have been presented in AMS conferences. AI appears uniquely positioned to help map 
weather data to predictions, impacts, outcomes, and decisions, helping to extract more of the 
value from weather information (e.g., Williams and Neilley 2020). The conditions seem ripe 
for private sector AI weather applications to continue rapid growth.

Feature engineering. Much of the early work in machine learning in the environmental sci-
ences involved crafting the feature inputs into relatively simple models. A good example is 
the problem of identifying ground clutter and anomalous propagation (AP) from weather 
radar. The initial approaches were expert systems based on hardcoded rules. For example, 
Johnson et al. (1998) applied rules around changes in reflectivity value along a radial and 
treated extremely large changes between gates as AP. The 1D rules had lots of false positives, 
and could be made more sophisticated in three ways—by improving the statistics of what 
constituted unusually large changes (e.g., 2D fractal methods by Charalampidis et al. 2002), 
by looking for unusual changes in the 3D radar volume (e.g., Steiner and Smith 2002), or by 
incorporating an FL system consisting of many piecewise linear rules (e.g., Kessinger et al. 
2003). These piecewise linear rules could be more effectively combined by means of a neural 
network (e.g., Lakshmanan et al. 2007) but operational forecasters preferred the interpret-
ability offered by decision trees; thus, operational systems (e.g., Hubbert et al. 2007) tended 
to use readily interpretable rules combined using simple, nonstatistical approaches.

Similarly, the early hydrometeor classification algorithms (e.g., Park et al. 2009) consisted 
of a large number of rules to identify different hydrometeor types using statistical analysis of 
the distribution of hydrometeors as observed by both radars and disdrometers. However, a 
neural network based on optimally combining features of the same form as the expert rules 
(Lakshmanan et al. 2014) is used operationally in the Multi-Radar Multi-Sensor (MRMS) sys-
tem. To aid with operational adoption, the 2014 paper used model explainability through an 
analysis of feature importance to aid with forecaster confidence in the model.

The advent of DL has made the approach of building structured data neural networks to pro-
cess images obsolete. With the development of convolutional filters and much more sophisticated 
ideas, it is possible to do away with feature engineering altogether and directly train on the raw 
images using DL models, as demonstrated for lightning prediction (Lakshmanan et al. 2019) and 
precipitation nowcasting (Agrawal et al. 2019). There remain two open questions. One is whether 
this approach will meet the oft-expressed desire of operational forecasters to avoid relying on 
“black box” models. Explainability methods such as XRAI (Bartelt et al. 2020) might help in 
this regard. The second open question is whether we can obtain sufficient labeled data to carry 
out DL. Lightning prediction and precipitation nowcasting were convenient in that the observed 
data itself functions as the labels. This is not always true. One potential approach could be to 
use transfer learning or fine-tuning of large models (such as EfficientNet; Tan and Le 2019).

Hybrid approaches in NWP and climate modeling systems. Due to their growing complexity  
(e.g., increase of horizontal and vertical resolutions, the number of ensemble members, and 
the sophistication of model physics), both global and regional numerical weather and 
climate modeling activities consume a tremendous amount of computational resources, 
presenting model developers and users with a significant challenge despite the availability of 
expanding computing capabilities. Ensemble forecasting systems are particularly impacted 
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by the limits on computational resources that constrain their resolution and/or the number 
of the ensemble members. Also, despite significant progress in understanding of physical 
phenomena and improvement in observing systems, substantial uncertainties remain in the 
representation of many processes in numerical models, e.g., effects of clouds in general cir-
culation models of the atmosphere. New flexible and powerful numerical techniques are 
required to speed up model calculations and learn underlying physics from available data.

Almost from the beginning of the computer-based numerical weather forecast еrа in the 
1950s, the numerical weather and climate models contained the equations of motion codifying 
physical processes (i.e., deterministic or physically based approach) in the atmosphere and 
the ocean as well as statistically derived coefficients and simple dependencies. In a sense, 
numerical models have always been hybrids of deterministic and statistical approaches. 
However, the deterministic approach has dominated, and statistical components played a 
supporting role.

The advent of ML approaches changed the distribution of power between deterministic and 
statistical/ML constituents of numerical models, significantly increasing the incorporation of 
statistical/ML components in new hybrid NWP models. ML applications developed in this field 
during the last several decades are focused on two major tasks: (i) improving computational per-
formance of NWP models by replacing time consuming physically based parts of the model with 
their accurate and fast ML emulations (e.g., Chevallier et al. 2000; Krasnopolsky et al. 2002) and 
(ii) developing improved (as compared with physically based parameterizations) ML parameter-
izations based on learning physical processes from data observed or/and simulated by higher-
resolution models like large-eddy simulations (e.g., Krasnopolsky et al. 2013; Brenowitz and 
Bretherton 2018; Rasp et al. 2018). Attempts to completely replace physically based numerical 
weather and climate models with the state-of-the-art black-box ML-based ones have usually met 
limited acceptance in scientific domains due to their inability to provide a meaningful physical 
interpretation of underlying processes, their large data requirements, and their limited general-
izability to out-of-sample scenarios. Given that neither an ML-only nor a physically based–only 
approach can be considered sufficient for complex scientific and engineering applications, the 
research community has been exploring the continuum of hybrids of physically based and ML-
based models, where both scientific knowledge and data are integrated in a synergistic manner 
(Krasnopolsky and Fox-Rabinovitz 2006; Rai and Sahu 2020). This paradigm is fundamentally 
different from mainstream practices in the ML community where domain-specific knowledge is 
often used in secondary roles, e.g., feature engineering or postprocessing. In contrast to these 
practices that can only work with simpler forms of heuristics and constraints, hybrid NWP mod-
els incorporate a tighter coupling of ML-derived model components with scientific knowledge 
embedded into physically based model components (e.g., Beucler et al. 2021).

During the last 20 years several hybridization approaches have been developed and ap-
plied that blend ML and physically based components of NWP and climate models at different 
hierarchical system levels. The approach formulated by Chevallier et al. (1998, 2000) and 
applied to longwave radiation introduced a hybrid parameterization, i.e., applied hybridiza-
tion inside of the parameterization. This approach combined, in the hybrid longwave radia-
tion parameterization, calculations of cloudiness based on first principle equations with NN 
approximations for a partial or individual flux at each vertical level. Recently, this approach 
was applied by Veerman et al. (2021), with the opposite combination of cloudiness computed 
with an NN and first principle equations to produce a hybrid parameterization based on a 
standard radiation parameterization (Pincus et al. 2019). Those authors applied an NN to 
emulate atmospheric optical properties and relied on radiative transfer equations to calculate 
the outputs of the RRTMGP parameterization.

Krasnopolsky et al. (2002, 2005) and Krasnopolsky and Fox-Rabinovitz (2006) introduced 
a hybrid model physics approach that combines ML parameterizations (e.g., shortwave and 
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longwave NN radiation) with moisture and other parameterizations based on first principles. 
This approach was applied by many authors (Goldstein and Coco 2015; O’Gorman and Dwyer 
2018; Brenowitz and Bretherton 2018; Rasp et al. 2018; Bolton and Zanna 2019; Pal et al. 
2019; Wang et al. 2019; Beucler et al. 2021) who combined NN and physically based param-
eterizations in different ways inside the model physics suite. The aforementioned approaches 
usually use data simulated by numerical models.

A recent development has been to use observational data to build an ML model to re-
place the prior parameterization. Both NN and RF approaches have been shown to better  
model the surface layer than does the semiempirical Monin–Obukhov similarity theory  
(McCandless et al. 2022). More recently, hybrid GCMs have been introduced that combine the 
NN dynamics with a physically based model physics suite or the physically based dynamics 
with an NN model physics suite. Several attempts have been made to create ML emulations 
of regional and simplified GCMs (Van der Merwe et al. 2007; Scher 2018; Dueben and Bauer 
2018; Willard et al. 2021; Weyn et al. 2020). It was shown by Van der Merwe et al. (2007) that 
an NN can provide very fast (1,000 times faster) and accurate emulation of a coupled large-
scale circulation model for the Columbia River, its estuary, and near-ocean regions. Scher 
(2018) used a convolutional NN to emulate a dry hydrostatic aquaplanet at ~500-km horizontal 
resolution with 10 vertical levels, without either diurnal or seasonal cycles and with idealized 
physics. Dueben and Bauer (2018) used a toy model for global weather prediction to identify 
challenges and fundamental design choices for a forecast system based on neural networks. 
Weyn et al. (2020) built a data-driven global weather forecasting framework using a deep 
convolutional NN. Such fast and accurate emulations (if successful) will enable significant 
advances in developing new geophysical modeling systems. They may serve as an improved 
incarnation of statistical models widely used before the numerical weather prediction era for 
short term and local forecasting.

Extreme weather prediction. As pointed out for postprocessing above, although operation-
al NWP gives a good basic weather forecast, it is not able to resolve local details and error 
often increases with time from forecast issue. Providing forecasts for severe weather requires 
improvements in both resolution and short-term predictive skill: we need information to 
support decisions at detailed locales and warnings issued early enough to take action. In 
recent years, AI/ML have proven to be quite skillful at improving forecasts of severe weath-
er and its associated hazards (McGovern et al. 2017). Some of the early work focused on 
predicting specific hazards, including hail (Gagne et al. 2017) and severe winds (Lagerquist  
et al. 2017). In both cases, traditional machine learning methods including RFs and gradient 
boosted forests proved most adept at forecasting the hazards. More recently, the ability of DL 
to provide detailed spatial information of weather fields has further improved prediction for  
tornado (Lagerquist et al. 2020) and hail forecasting (Gagne et al. 2019). The methods  
used in these studies additionally allow adding elements of interpretability through  
back-propagation to determine the patterns that cause the severe weather. As the methods 
have gained visibility with their predictive power, it has become clear that it is important to 
provide insight into how the methods perform internally (McGovern et al. 2019) and to work 
directly with forecasters to understand their needs (Burke et al. 2020).

Hydrological prediction. Hydrology has important applications in many areas—water supply, 
hydropower generation, drought/flood and landslide risks, irrigation, sediment transport, 
etc. The relation between streamflow and precipitation is complex—water from precipitation 
is affected by the type of soil and vegetation in the watershed, or locked into snow or ice, 
before it eventually feeds into the streamflow. Hence “conceptual” or physical models that 
try to model the physical mechanisms of the hydrological processes are not very skillful in 
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forecasting streamflow from precipitation data. NN models adapted by hydrologists to pre-
dict streamflow (Crespo and Mora 1993; Karunanithi et al. 1994) quickly became popular, as 
they are much simpler to develop than the physical models and offer better skill in predicting 
streamflow. Review papers show the growth of NN usage, such as Maier and Dandy (2000) 
and Dawson and Wilby (2001), which cite 43 and 51 papers, respectively, and more recently, 
Abrahart et al. (2012), Zounemat-Kermani et al. (2020), and Sit et al. (2020).

As outputs from general circulation models are of relatively coarse resolution, NN models 
have been used to downscale to local streamflow (Cannon and Whitfield 2002). Besides input 
from local observations and NWP, adding climate indices of atmospheric teleconnections  
to NN models improved daily streamflow forecasts during longer lead times of 5–7 days  
(Rasouli et al. 2012). Online learning, which provides for continually updating the ML model 
as new data arrive, allows streamflow forecast models to be continually updated inexpen-
sively (Lima et al. 2016, 2017).

Snowpack on mountains is important for storing winter precipitation and releasing the water 
during spring/summer. The decline of mountain snowpack from a warmer climate, e.g., in 
western North America (Mote et al. 2005), negatively impacts water supply and hydropower 
generation during the drier months. NNs allow retrieval of snow water equivalent (SWE) and 
snow depth from microwave satellite data (Tedesco et al. 2004). Over mountainous terrain, 
as coarse-resolution gridded products of SWE are inaccurate, NN models can provide down-
scaled SWE estimates (Snauffer et al. 2016).

Climate applications. In general, there have been far fewer applications of AI/ML methods to 
climate problems than weather problems, as the much longer time scales in climate problems 
lead to much smaller effective sample size for observed data. “Transfer learning” has helped 
to overcome the limitation of small effective sample size by utilizing the almost unlimited 
amount of simulation data from climate models. Ham et al. (2019) used a convolutional neu-
ral network (CNN) model to learn El Niño–Southern Oscillation (ENSO) behavior from cou-
pled dynamical models (CMIP5 climate model data for 2,961 months). The CNN model was 
further trained with 103 months of reanalysis data, i.e., the CNN first learned from the large 
coupled model dataset, then transferred the learning to the small reanalysis dataset. The 
resulting CNN model had better accuracy in ENSO prediction than the dynamical models.

Another interesting climate application was accomplished by Pasini et al. (2017), who 
used both anthropogenic and natural environmental variables to build a NN model of cli-
mate over the past 160 years. They then used sensitivity analysis by fixing certain variables 
while allowing others to change in order to determine changes in the model under differing 
assumptions. When they fixed anthropogenic forcing at preindustrial levels, the NN results 
differed from those observed, indicating that anthropogenic forcings were associated with 
the observed changes in temperature.

ML can also aid in providing actionable information for climate-related decisions. The 
energy industry requires information on projected changes in the resource for both wind and 
solar. Haupt et al. (2016) addressed this issue using model output from current reanalyses as 
well as from regional climate models and a series of statistical and ML methods to estimate 
current and projected climate with similar patterns. This process leveraged NN-based self-
organizing maps (SOMs) to recognize patterns and to project the future climate changes. 
Stengel et al. (2020) use generative adversarial networks to downscale coarse-resolution 
(100 km) climate model data to resolutions (2 km) required for renewable energy planning.

The importance of verification
Verification generally refers to the assessment of the quality of forecasts, often in comparison 
to some benchmark (e.g., random forecasts, or forecasts from a competing model). As such, 
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the early years of AI/ML in environmental sciences witnessed a great deal of comparisons. 
Although comparisons still abound, a shortage of “error bars” exists. For example, an analysis 
of whether the mean squared error (MSE) of model A is lower than that of model B, in a sense 
that generalizes beyond the specific data/sample used for estimating the MSE is incomplete 
without some sort of a two-sample test or confidence interval. Similarly, properly compar-
ing the temperature forecast on a given day from two competing models requires computing 
prediction intervals for both.

The essence of p values, confidence, and prediction intervals first acknowledges, then 
quantifies, variability. For the statistician, variability is a good thing: something to be ex-
plained; after all, would anyone consider a repeated sequence of constant numbers “data”? 
But a sequence of varying numbers is “real data” and begs to be modeled. Without this ap-
preciation for variability, much of the initial work on AI/ML in the environmental sciences 
treated variability as a bad thing—noise—and consequently, the belief was propagated that 
by throwing a sufficiently complex AI/ML model at a problem, one can, and should, eliminate 
that noise. The result was a large set of models that were overfitting data, unbeknownst to 
their developers. Although use of resampling methods such as cross validation and bootstrap-
ping has mostly eliminated overfitting concerns, the fact remains that in some AI/ML circles 
variability is not adequately taken into account.

For example, resampling methods address sampling variability. But there exist other 
sources of variability that make verification (model comparison) difficult especially in AI/ML. 
Most AI/ML models rely on optimization algorithms for parameter estimation, and all such 
algorithms can get stuck in local minima. How is this a source of variability? The answer be-
comes obvious upon noting that optimization algorithms generally require an initial guess for 
the values of the parameters and a different initial guess can lead to a different local minimum. 
Just train your favorite NN starting from a different set of random weights and you will end 
up with a trained network that has different weight values, and therefore, different training 
and validation errors. Most practitioners witness this source of “computational variability,” 
but few take it into account when performing model comparison. Why is this important? 
Because without accounting for this source of variability one may conclude that model A is 
better than model B, where in fact there is no evidence from the data to favor one model over 
the other. In such cases, it would be prudent to adopt the simpler model regardless of what 
the validation errors may suggest. Work in progress performed by some of the authors has 
shown that variability due to local minima in neural networks can in fact be larger than that 
due to cross validation, suggesting that more attention to computational variability is war-
ranted. Note that traditional statistical methods that do not rely on optimization algorithms, 
e.g., multivariate multiple regression, have no sources of computational variability, and are, 
therefore, easier to compare.

These (and other) issues point to the fact that to apply AI for ES correctly, one must first be 
steeped in methods of proper statistical analysis (see sidebar). There are appropriate methods 
for training and testing methods and for comparing their accuracy to other methods. Details 
are beyond the scope of this paper, but we refer the reader to Chase et al. (2022, manuscript 
submitted to Wea. Forecasting) as well as many excellent statistics and ML textbooks.

Future directions
AI is in the midst of its fastest and most productive developmental phase, including in the 
environmental sciences. Ongoing and foreseen advances are discussed below while continu-
ing to provide historical context. The fast growth of AI and the related growth of the AMS AI 
conference have also brought us to a new phase in AI progression. AI/ML is no longer a niche 
specialty but is an approach embedded in a growing number of ES disciplines and, as such, is 
now part of most AMS conferences. The AMS AI conference will need to evolve synergistically 
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with other conferences toward core AI developments benefiting the community broadly while 
progressively moving away from more discipline-specific applications. This transition has 
been ongoing through a large number of joint sessions and requires continued and deliberate 
progression to minimize the pitfalls of this rapid development. The growth in application of 
AI to ES problems and its importance to the field has led to the advent of a new AMS journal 
in the field, Artificial Intelligence for the Earth Systems. In addition, one of the largest AMS 
constituents, NOAA, has embraced AI with over 200 applications (Sims et al. 2020), an AI 
strategy (NOAA 2021), and initiated a series of annual workshop on the use of AI in weather 
and climate applications (Boukabara et al. 2021).

All of this points to the need for continued collaboration and advances in how we work 
together to train and support new AI practitioners. AI specialists must include in their research 
guidelines on how to develop and use AI models; how to make AI more understandable, ex-
plainable, and trusted by stakeholders; and provide ethical guidance. Although a strength 
of the AMS AI Committee has long been an integration of computational specialists with 
physicists who use AI in pioneering ways, we expect membership to evolve to include those 
who seek to use AI as a tool in their research and applications. In particular, the Committee 
will seek a diverse membership to assure equity in the way we approach AI/ML.

Enhancing forecasting. While AI/ML has demonstrated its efficacy at improving NWP-gen-
erated forecasts, there is much left to be done. First, although most methods have focused on 
making improvements of point forecasts and sometimes interpolating to gridded forecasts, 
for the most part, not much has been accomplished on improvements in all dimensions of 
the problem simultaneously. The newer DL methods promise that will change in the coming 
years. We are now demonstrating that it is possible to correct for phase errors in the forecast 
(Chapman et al. 2019). Additionally, methods to enhance probabilistic forecasting using ML 
are improving forecasts while saving substantial computational costs, such as the analog 
ensemble method discussed above, and are becoming more widely adopted. As discussed 
above, AI/ML is also showing its usefulness at both emulating and building new param-
eterizations for implementation within the physics models that promise to both speed and 
improve our NWP and climate modeling capabilities.

Enabling better use of observations. The weather enterprise currently makes use of only 
a tiny fraction of environmental observations, and AI offers one of the most promising 
avenues to derive value from the deluge. For instance, AI has begun to play a key role in 
quality-controlling satellite, radar, and other observation data, including the diverse and 
rapidly growing set of internet-of-things data. AI has proved useful for model identifica-
tion; for instance, genetic algorithms can optimize parameters in heuristic or physical 
models, such as estimating transport and diffusion model parameters from plume obser-
vations (Haupt et al. 2013), and is being explored as a tool for increasing the use of data 
in NWP data assimilation (e.g., Boukabara et al. 2019). AI/ML are also used for inferring 
the environmental state from remote sensing data, such as algorithms developed under 
the GOES-R program that retrieve or diagnose various state variables, from precipitation 
rates to clear-air turbulence. Moreover, AI and ML are uniquely useful in learning skillful 
“data fusion” of NWP model output and observations for nowcasting (McCandless et al. 
2016, 2020; Haupt et al. 2020b).

Interpretable/explainable AI. Given the explosion in the use of AI/ML, many forecasters want 
to know what is happening inside the AI methods, to improve their trust and use of the methods. 
Model interpretation and visualization has become a growing field, primarily now called 
Explainable AI (XAI) (Flora et al. 2022a,b, manuscripts submitted to Artif. Intell. Earth Syst.). 
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XAI methods vary based on the underlying machine learning method being used but they 
primarily focus on identifying the most important variables in a model (this is of particular 
importance for selective models such as random forests) and interactions among variables. 
With DL growing in popularity across many scientific fields, new XAI techniques are being 
developed to peer inside the black box of deep networks. These include techniques that 
highlight the most important regions of input images [see McGovern et al. (2019) and Gagne 
et al. (2019) for examples in severe weather]. Recent work (McGovern et al. 2020) has 
demonstrated that such techniques also need to use physics-based constraints to improve 
the interpretability of the results as well as improving model performance.

Trustworthy AI. As AI/ML continues to grow in popularity in the atmospheric sciences, the 
practitioners and creators of the AI/ML methods need to focus on the trust of the end-users  
of these methods. When AI began being applied to the atmospheric sciences, it was for 
research purposes and not for operational use. To transition to operations, AI must prove 
trustworthy. Forecasters are already bombarded with information and will not pay attention 
to additional input if they do not trust it. Part of the goal of XAI is to improve trust by scien-
tific end-users by providing them with a better understanding of how a model generates its 
predictions. Additionally, knowledge of the scenarios in which the model tends to do well or 
poorly enables the user to more confidently calibrate their confidence in the model predic-
tions in individual cases. Studying trust from the social science aspect is also critical as it is 
important to understand why different end users will choose different sources of information 
and what can be done to improve trust in AI. This is one of the goals of the newly formed NSF 
AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography.

Summary
AI/ML is here for good. Despite several AI winters, the current push to apply AI in many fields 
is certainly occurring in the environmental sciences. As we have seen herein, it is not a new 
trend, but rather has been building in the field since the 1980s. The AMS AI Committee has 
fostered this growth in interest over several decades now. Over that period, the use of AI/ML in 
ES has evolved from the more heuristic expert systems to the full realm of available methods, 
including applications using the various types of DL. There have been many successes in the 
field, and we expect those to continue. The field has progressed to the point where applica-
tions of AI/ML to build, postprocess, assimilate data, and improve our modeling capabilities 
have become nearly as ubiquitous as those of more traditional statistics. In fact, many of the 
practitioners of AI/ML began their foray from statistics. As we have built from that field, we 
will continue to grow. To avoid more AI winters, we must avoid overpromising results, further 
develop the XAI methods in a trustworthy manner, foster collaboration across disciplines, in-
clude physics practitioners in formulating AI solutions that are consistent with known physics, 
quantify uncertainty in our solutions, and apply best practices in training to avoid overfitting 
or nonrepresentative models. The community of practice of AI in ES is growing rapidly and the 
AMS AI Committee is pleased to welcome this new cadre of users. As AI becomes a common 
tool, much like statistics, those best practices will become better articulated and disseminated. 
The AMS AI Committee looks forward to being part of disseminating those best practices and 
encouraging their use. The promise of AI is here and the applications have begun.
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